

LA-UR-18-27447

Approved for public release; distribution is unlimited.

Title: The Discrete Ordinates (S_N) Method and Lie Symmetries

Author(s): Elman, Brandon Alexander

Schmidt, Joseph H. Ramsey, Scott D.

Intended for: Final presentation for Keepin Nonproliferation Summer Program

Issued: 2018-08-06

The Discrete Ordinates (S_N) Method and Lie Symmetries

Brandon Elman^{1,2,3}, Joe Schmidt¹, Scott Ramsey¹

¹Los Alamos National Laboratory

X Theoretical Design Nuclear Threat Assessment

²Michigan State University ³National Superconducting Cyclotron Laboratory

LA-UR-XXXXXX

Summer Fun

Student Name (Group e.g. NEN-1)

- Educational Background
 - O BS Temple University, 2014
 - PhD Michigan State University, Ongoing

- X Theoretical Design
 - O Nuclear Threat Assessment
 - O Joe Schmidt

- Research
 - Building a 1-D discrete ordinates code and learning about Lie symmetries
 - O Studying the role of cross-shell excitations in ⁷⁰Ni

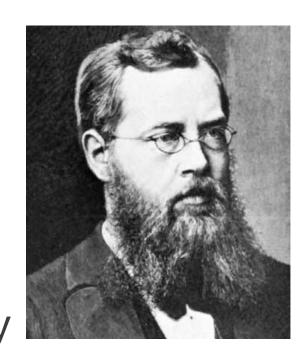
Research Overview and Motivation

Q: Verification and validation are required to understand if a simulation is working, but how do we probe the assumptions underlying the simulation?

Research Overview and Motivation

A: One way is to check how the assumptions affect the symmetries of the governing differential equations.

• Sophus Lie developed symmetry methods for handling differential equations in the 1870s.



1-D Neutron Transport in Slab Geometry

$$\mu \frac{\partial \psi(x,\mu)}{\partial x} + \sigma(x)\psi(x,\mu) = \sum_{l=0}^{L} (2l+1)P_l(\mu)\sigma_l(x)\phi_l(x) + s(x,\mu)$$

 Flux being absorbed in the medium

• Flux scattering into direction μ_n

 External sources and fission

This equation is hard to solve. So let's just solve it for specific angles μ .

Discrete ordinates (S_N) method

We choose a specific set of ordinates μ_n for n = 1, 2,, N. This is the

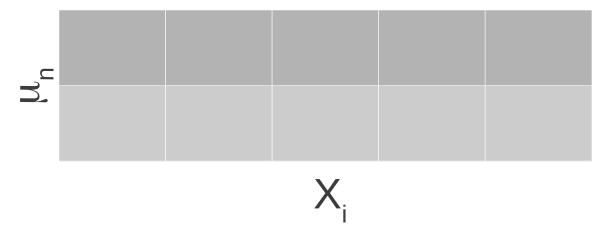
$$\mu_n \frac{d\psi_n(x)}{dx} + \sigma(x)\psi_n(x) = \sum_{l=0}^{L} (2l+1)P_l(\mu_n)\sigma_l(x)\phi_l(x) + s(x,\mu_n)$$

The set of ordinates is chosen to accurately integrate the scalar flux:

$$\phi(x) = \frac{1}{2} \int_{-1}^{1} d\mu \ \psi(x,\mu) \longrightarrow \phi(x) = \frac{1}{2} \sum_{n=1}^{N} w_n \psi_n(x)$$

Discrete ordinates (S_N) method

We then discretize our spatial variable.



We can relate the flux at each grid point with neighboring grid points.

- Learned about the discrete ordinates method, and implemented a 1-D slab geometry neutron transport solver in python using this method.
- Started learning about Lie symmetries, though no results yet.